
Computational science and engineering
and computer science and engineering
have a natural and long-standing re-
lationship. Scientific and engineering

problems often require extreme computational
power, thereby driving the development of new
bit-device technologies and circuit architectures.
In return, research using computational meth-
ods fosters more efficient computing systems.

Impelled by this positive feedback loop be-
tween increasing demand and improving tech-
nology, computational efficiency has improved
steadily and dramatically since computing’s in-
ception. When looking back at the last 40 years,
and forward to the next 10 or 20, this empirical
trend is often characterized with reference to the
famous Moore’s Law,1,2 which describes the in-
creasing density of microlithographed transis-
tors in integrated semiconductor circuits.3 Nat-
urally, we wonder how far we can reasonably
hope this fortunate trend will take us. What are
the ultimate limits? Are there limits? When
semiconductor technology reaches its technol-
ogy-specific limits, can we hope to maintain the

curve by jumping to some alternative technol-
ogy and then to yet another, ad infinitum? Or, is
there a foreseeable and technology-independent
endpoint in sight?

Obviously, forecasting future technological
developments is always a difficult and risky
proposition. However, 20th-century physics has
given forecasters a remarkable gift in the form
of the sophisticated modern understanding of
fundamental physics embodied in the Standard
Model of particle physics. Although, of course,
many interesting unsolved problems remain in
physics at higher levels,4 all available evidence
tells us that the Standard Model, together with
general relativity, explains the foundations of
physics so successfully that no currently experi-
mentally accessible phenomenon fails to be en-
compassed by it. We expect the fundamental
principles of modern physics have “legs”—that
is, they will last us many decades as we try to
project what will and will not be possible in the
coming evolution of computing. By taking our
best theories seriously, and exploring the limits
of what we can engineer with them, we test the
bounds of what we think we can do. If our pre-
sent understanding of these limits eventually
turns out to be seriously wrong, then the act of
pushing against those limits will most likely lead
us to that very discovery.5

Forecasting future limits, even far in advance,
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is a useful research activity. It gives us a roadmap
suggesting where we can expect to go with fu-
ture technologies and helps us know where to
look for advances. Fortunately, by considering
fundamental physical principles and reasoning
in an abstract and technology-independent way,
we can arrive at several firm conclusions regard-
ing upper bounds on the limits of computing. In
this article, I review fundamental, technology-
independent limits because it would take too
much space to survey the technology-specific
limits of all present and proposed future com-
puting technologies. 

Physical information and entropy

Before we can talk sensibly about information
technology in physical terms, we must define in-
formation in physical terms. For the purposes of
discussing the limits of information technology,
the relevant definition relates closely to the
physical quantity known as entropy. Entropy is
really just one variety of a more general sort of
entity, which we call physical information, or in-
formation for short. This abbreviation is justified
because all information that we can manipulate is
ultimately physical in nature.6

Rudolph Clausius introduced the entropy
concept in thermodynamics in 1850, before it
was understood to be an informational quantity.
Ludwig Boltzmann later identified the maxi-
mum entropy S of any physical system with the
logarithm of its total number of possible, mutu-
ally distinguishable states. (This discovery is
carved on his tombstone.) I call this same quan-
tity the total physical information in the system,
for reasons soon to become clear.

In Boltzmann’s day, presuming that the num-
ber of states for typical systems was finite and al-
lowed a logarithm was a bold conjecture. Today,
we know that operationally distinguishable states
correspond to orthogonal quantum state vectors,
and that the number of these for a given system
is well-defined in quantum mechanics and finite
for finite systems.

Any logarithm, by itself, is a pure number,
but the logarithm base that we choose in Boltz-
mann’s relation determines the appropriate
unit of information. Using base 2 gives us the
information unit of 1 bit (b), whereas the nat-
ural logarithm (base e) gives a unit that I call
the nat, which is simply (log2 e) ≈ 1.44 b. In sit-
uations where the information in question hap-
pens to be entropy, the nat is more widely
known as Boltzmann’s constant kB or the ideal

gas constant R, depending on the context. 
We can associate any of these units of infor-

mation with physical units of energy divided by
temperature because temperature itself can be
defined as a measure of energy required per in-
crement in the log state count, T = ∂E/∂S, hold-
ing volume constant. For example, we can de-
fine the temperature unit 1 Kelvin as a
requirement of 1.38 × 10–23 Joules (or 86.2 µeV)
of energy input to increase the log state count
by 1 nat—that is, to multiply the number of
states by e. A bit, meanwhile, is associated with
the requirement of 9.57 × 10–24 Joules (59.7 µeV)
energy per Kelvin to double the system’s total
state count.

This is information, but what distinguishes en-
tropy from other kinds of information? The dis-
tinction is fundamentally observer-dependent,
but in a way that is well defined and that coin-
cides for most observers in simple cases.

Let known information be the physical infor-
mation in that part of a system whose state is
known by a particular observer, and entropy be
the information in the part that is unknown. We
can clarify the meaning of “known” by saying
that system A (the observer) knows the state of
system B (the observed system) to the extent that
some part of A’s state (some record or memory)
correlates with B’s state and that the observer can
access and interpret this record’s implications re-
garding B’s state.

To quantify things, the maximum known in-
formation or maximum entropy of any system
is the log of its possible number of distinguish-
able states. If we know nothing about the state,
all the system’s physical information is entropy
from our viewpoint. But, as a result of prepar-
ing or interacting with a system, we might learn
something more about its actual state besides it
being one of the N states originally considered
“possible” (see Figure 1).

Suppose we learn that the system is in a par-
ticular subset of M < N states; only the states in
that set are then possible, given our knowledge.
Thus, the system’s entropy from our new view-
point is log M, whereas to someone without this
knowledge, it is log N. For us, there is (log N) −
(log M) = log(N/M) less entropy in the system.
We say we now know log(N/M) more informa-
tion about the system because log(N/M) of the
physical information that it contains is known
information from our viewpoint. The remain-
ing log M amount of information—the physical
information still unknown in the system—we
call entropy.
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Claude Shannon showed how to appropriately
generalize the definition of entropy to situations
where our knowledge about the state x is ex-
pressed not as a subset of states, but as a proba-
bility distribution px over states. In this case, the
entropy is 

. 

The known information is then (log N) − H. The
Boltzmann definition of entropy is thus the spe-
cial case of Shannon entropy where px happens
to be a uniform distribution over all N states (see
Figure 2), also called the maximum entropy dis-
tribution.7

Known information and entropy are two
forms of the same fundamental conserved quan-
tity, somewhat analogous to kinetic versus po-
tential energy. We can convert a system’s entropy
to known information by measurement, and
known information into entropy by forgetting
or erasing it. However, the sum of the two in a
given system is always a constant, unless the
maximum number of possible states in the sys-
tem is itself changing, which could happen if the
system’s size changes, or if energy is added or re-
moved. For example, in an expanding universe,

the number of states (and thus the total physical
information) is increasing, but in a small, local
system with constant energy and volume, it stays
constant.

Saying that we can convert entropy to known
information through observation seems like a
contradiction of the second law of thermody-
namics; entropy always increases in closed sys-
tems. However, if we measure a system, then it
isn’t completely closed from an informational
viewpoint. The measurement requires an inter-
action that manipulates the measurement appa-
ratus’ state in a way that depends on the system’s
state. From a global viewpoint, the entropy, even
if extracted from the original system through
measurement, still exists and is still entropy (see
Figure 3).

Boltzmann developed his definition of entropy
in the context of classical mechanics by making
the ad hoc assumption that even the seemingly
continuous states of classical mechanics were
somehow discretized into a finite number that
admitted a logarithm. Max Planck and the en-
tire subsequent development of quantum me-
chanics vindicated this notion, showing that the
world was discretized in the relevant respects.
The entire classical understanding of the rela-
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Figure 1. Physical information, entropy, and known information. Quantum mechanics helps determine the exact number
N of states. We define the total physical information in a system as the logarithm of this number of states; we can
express it equally well in units of bits or nats. On the right, a system of 3 two-state quantum spins shows 23 = 8
distinguishable states. It therefore contains a total of 3 bits = 2.08 kB of physical information. Relative to some knowledge
about the system’s actual state, the physical information has a part that is determined by that additional knowledge
(known information) and a part that is not (entropy). In the example, suppose we learn that the system is not in any of the
four crossed-out states. In this case, the 1 bit (0.69 kB) of physical information associated with spin number 2 is then
known information, whereas the other 2 bits (1.39 kB) of physical information in the system are entropy.
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tions between entropy, energy, temperature, and
so on remained essentially valid, forming the
whole field of quantum statistical mechanics—a
cornerstone of modern physics. Only the defin-
ition of entropy had to be further generalized.

Partially known states in quantum mechanics are
described by a generalization of a probability dis-
tribution called a mixed state or density operator,
which can be represented with a density matrix.
However, entropy is defined for these more
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system become possibilities from C’s viewpoint.
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complex objects in a way that
remains perfectly consistent
with the more restricted cases
Boltzmann and Shannon ad-
dressed (see Figure 4). 

Information storage
limits

Now that we know what in-
formation physically is more or
less, let’s talk about some of the
limits that we can place on it,
based on known physics.

As an abstract mathematical
entity, an arbitrary quantum
state or wavefunction could re-
quire infinite information to
describe precisely. In principle,
there is a continuous, un-
countable set of possible wave-
functions, but there are only
countably many finite descrip-

tions, or computable wavefunctions. Ever since
Boltzmann, the key definition for physical in-
formation is not the number of states that might
mathematically exist, but the number of opera-
tionally distinguishable ones. Quantum me-
chanics gives distinguishability a precise mean-
ing: two states are 100 percent distinguishable if
and only if, considered as complex vectors, they
are orthogonal. 

A textbook result of quantum statistical me-
chanics is that the total number of orthogonal
states for a system consisting of a constant num-
ber of noninteracting particles is roughly given
by the numerical volume of the particles’ joint
configuration space, or phase space (whatever its
shape).8 (The volume of phase space must be ex-
pressed in units where Planck’s unreduced con-
stant h is equal to 1.) So, as long as the number of
particles is finite, and the volume of space occu-
pied by the particles and their total energy is

bounded, then even though the number of point
particle states and possible quantum wavefunc-
tions is uncountably infinite, the amount of in-
formation in the system is finite.

This model of a constant number of noninter-
acting particles is a bit unrealistic because in
quantum field theory (the relativistic version of
quantum mechanics), particle number is not
constant; particles can split (radiation) and
merge (absorption). To refine the model, we
must think about possible field states with vary-
ing numbers of particles. However, this still does
not fundamentally change the conclusion of fi-
nite information content for any system of
bounded size and energy. In independent papers,
Warren Smith9 and Seth Lloyd10 have given an
excellent description of the quantitative rela-
tionships involved. 

In his paper, Smith argues for an upper bound
to entropy S per unit volume V of

where q is the number of distinct particle types
(including different quantum states of a given par-
ticle type), c is the speed of light, h is Planck’s con-
stant, and M is the system’s total (gravitating) mass
energy. As a numerical example, using only pho-
tons with two polarization states (argued to be the
dominant entropy carriers at high temperatures),
a 1-m3 box containing 1,000 kg of light could
contain at most 6 × 1034 bits, or 60 kb per cubic
Ångstrom (1Å = 10–10 m; 1Å3 is roughly a hydro-
gen-atom-sized volume). However, achieving this
limit for stable storage is probably unrealistic be-
cause light with this mass density—that of wa-
ter—would have a temperature of nearly a billion
degrees and exert a pressure on the order of 1016

pounds per square inch.
Lloyd presents a bound nearly identical to

Smith’s, derived from similar arguments. It dif-
fers from Smith’s only in that it is tighter by the
small constant factor of . Lloyd presents the 2 2
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Figure 4. A density matrix 
representation of probabilistic
mixtures of quantum states. The
rows and columns of ρ are
indexed by a maximal set of mu-
tually distinguishable states (a
basis). Each diagonal element ρii

gives the probability of basis
state i. The off-diagonal
elements ρij, i ≠ j are complex
numbers that specify quantum
coherences between the basis
states. Any density matrix ρ has
a unique basis such that when ρ
is reexpressed in that basis, the
resulting matrix ρ’ is diagonal
and represents a classical
mixture of ≤ n basis states. The
basis-independent von
Neumann entropy of a mixed
state is given by H = −Tr ρ ln ρ.
This quantity is exactly the same
as the Shannon entropy of the
probability distribution
specified along the diagonal of
the diagonalized density matrix
ρ’. The von Neumann entropy
of a density matrix ρ is always
less than or equal to the 
Shannon entropy of ρ’s own 
diagonal, which is in turn
always less than or equal to the
Boltzmann entropy, ln n.
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example of a 1-kg, 1-liter “ultimate laptop”—
again, at the density of water—for which, using
the same two-state photon assumption as Smith,
the maximum entropy would be 2.13 × 1031 bits
(basically, the same entropy density as in Smith’s
example, less the factor of ).

These field-theory-based limits do not ac-
count for the effects of gravity and general rela-
tivity. Based on general grounds, Jacob Beken-
stein proved a much looser entropy limit for a
system of given size and energy that holds even
when accounting for general relativity:11

, 
where E is total energy, and R is the system’s ra-
dius. The only systems known to actually attain
this entropy bound are black holes. (A black
hole’s “radius” has a standard, meaningful defin-
ition even in the severely warped spacetime in
and around the hole.) Interestingly, a black hole’s
entropy is proportional to its surface area, not to
its volume, as if all the information about the
hole’s state were stuck at its surface (event hori-
zon). A black hole has exactly 1/4 nat of entropy
per square Planck length of surface area (a
Planck length is a fundamental unit of length
equal to 1.6 × 10–35 m). In other words, the ab-
solute minimum physical size of 1 nat’s worth of
information is a square exactly 2 Planck lengths
on a side.

The Bekenstein bound is truly enormous. A
hypothetical 1-m radius, mainframe-sized ma-
chine that achieved this bound would have an
average entropy density throughout its volume
(calculated assuming a spherical shape and ig-
noring spacetime curvature) of 1039 bits per cu-
bic Ångstrom, much higher than the limit for the
water-density machines described earlier. How-
ever, this “machine” would also be a black hole
with roughly the mass of Saturn. Needless to say,
this is not very practical.

Of course, both the field-theory and Beken-
stein bounds on entropy density are technology-
independent upper bounds. Whether we can
come anywhere close to reaching them in any
realistic computing technology is another ques-
tion entirely. Both of these bounds require con-
sidering all the possible states of quantum fields.
However, it seems impossible to constrain or
control a field’s state in definite ways without a
stable surrounding or supporting structure. Ar-
bitrary field states in general are not stable struc-
tures. For stability, we must use long-lived,
bound particle states, such as we find in mole-
cules, atoms, and nuclei.

How many bits can we store in an atom?
Nuclei have an overall spin orientation that is

encoded using a 2D state-vector space, so the
spin only holds 1 bit of information. Apart from
its spin variability, at normal temperatures, a typ-
ical nucleus is frozen into its quantum ground
state; it can only contain additional information
if it is excited to higher energy levels. However,
excited nuclei are not stable—they are radioac-
tive and decay rapidly, emitting high-energy,
damaging particles. Bad news for the computer
user’s safety!

Electron configuration is another possibility.
Outer-shell electrons have spin variability and ex-
cited states that, although still unstable, at least
do not present a radiation hazard. Furthermore,
a given atom’s ionization states could be reason-
ably stable in a sufficiently well-isolated environ-
ment. This gives us another few potential bits.

The choice of nuclear species in the atom in
question presents another opportunity for vari-
ability. However, there are only a few hundred
reasonably stable isotopes, so at best, even if we
have a storage location that can hold any isotope,
we gain at most an additional 8 bits or so.

An atom in a solid is in a potential energy well,
relative to its neighbors, and generally has six re-
stricted degrees of freedom, three of position
and three of momentum. At normal tempera-
tures, each contributes kB/2 to its heat capacity,
which in turn contributes an equivalent amount
of entropy for each factor of e increase in tem-
perature beyond the regime where the excited
states become accessible. This gives us a few
more bits per atom encoded in these vibrational
states, but phonons (the quantum “particles” of
mechanical vibration) can easily dissipate out
into any mechanical supporting structure, so
they do not represent stable storage.

Of course, an arbitrarily large number of bits
could be encoded in an atom’s position and mo-
mentum along unrestricted degrees of free-
dom—for example, in infinitely large open
spaces. However, given bounded spaces and en-
ergies, the limit of log phase-space-volume men-
tioned earlier still limits the entropy. Because en-
tropy per atom grows only with log volume,
entropy density per volume actually shrinks with
increasing volume. So, spreading atoms out, al-
though it increases entropy per atom by some
small number of bits, does not increase entropy
density. If we want to maximize information
density using atoms, we should stick with dense,
solid materials, which also have the advantage of
stability.

   S ER c< 2π / h

 2 2
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For example, a rough estimate I derived for the
entropy density in pure copper suggests that at at-
mospheric pressures, the actual entropy density
falls between 0.5 to 1.5 bits per cubic Ångstrom
over a wide range of temperatures, from room
temperature up to right below the metal’s boiling
point. Entropy densities in a variety of other pure
elemental materials are also near this level, al-
though copper had the highest entropy density of
the materials I studied. We would expect the en-
tropy density to be somewhat greater for mixtures
of elements, but not by much.

We can try to further increase entropy densi-
ties by applying high pressures. At the moment,
the ultimate limits to pressures achievable in sta-
ble structures are unclear. The only clear limit I
know is the pressure at a neutron star’s core, just
below the critical mass (approximately 3.2 suns)
for black hole collapse, or roughly 1030 atmos-
pheres. Of course, stellar-scale engineering is, at
best, a very long-term prospect.

Based on these observations, I would be sur-
prised if we could achieve an information den-
sity greater than, say, 10 bits per cubic Ångstrom
for stable, retrievable storage of digital informa-
tion any time within the next 100 years. Even at
an information density of only 1 bit/Å3, a con-
venient 1-cm3 lump of material could theoreti-

cally hold 1024 bits of information. This quan-
tity is known, in obscure jargon, as 1 yottabit or 1
Yb. In more familiar units, it is roughly 100 bil-
lion terabytes, much greater than the total digi-
tal storage in the entire world today.

Minimum energy for information storage
One of the most important raw resources in-

volved in computing, besides time, space, and
manufacturing cost, is energy. When we talk
about using up some amount of energy, we usu-
ally mean converting free energy into degraded
(low-temperature) heat energy. Due to space
limitations, I will not get into detailed definitions
of free energy, heat, and so on. Essentially, what
this conversion process amounts to is increasing
the total entropy content.

Because entropy cannot be destroyed and the
total information content of space- and energy-
bounded systems is finite, entropy’s sustained
generation within any bounded system requires
its eventual disposal in some external thermal
reservoir. This acts as a garbage dump for un-
wanted entropy. If the thermal reservoir used for
entropy disposal has temperature T, then dis-
posing entropy S requires committing an
amount of energy ST to the reservoir (by the de-
finition of temperature). This energy is effec-
tively spent at the moment entropy S is gener-
ated. Minimizing a system’s energy usage thus
boils down to minimizing the system’s total en-
tropy generation.

Suppose we (some entity, human or computer)
have obtained some information of interest by
whatever means and we wish to store a perma-
nent record of it in some system’s state. How
much entropy must be generated in this process?

First, consider that the system in question al-
ready contains physical information—which is
either known information or entropy, from the
entity’s perspective. This existing information,
whether it is information or entropy, can’t just
be destroyed. This is because, at the lowest level,
physics is reversible, meaning that in a closed
system, it transforms one state to another over
time in a mathematically invertible way. Re-
versibility does not require time-reversal sym-
metry. Particle physics indicates that we must
negate all electrical charges and replace all spa-
tial configurations with their mirror images to
obtain exactly identical time-reversed laws. (This
is called charge-parity-time or CPT symmetry.)
Regardless of the precise symmetry, all currently
tenable microphysical theories are unchanged in
overall form, apart from various sign changes,

Figure 5. Reversible chips designed at the Massachusetts Institute
of Technology between 1996 and 1999. As graduate students, my
coworkers (Josie Ammer, Nicole Love, Scott Rixner, and Carlin Vieri)
and I designed, outsource-fabricated, and tested these four proof-
of-concept reversible chips using the Split-level Charge Recovery
Logic (SCRL) adiabatic CMOS logic family.16 Tick was a benchmark
for comparison purposes, an 8-bit, nonadiabatic implementation of
a reversible instruction set architecture. Pendulum was a 12-bit fully
adiabatic implementation with a similar ISA designed to achieve
much lower power.17 Before Pendulum, we built the much simpler
FlatTop, a fully adiabatic programmable array of 400 simple 1-bit
processing elements; arrays of these chips could in principle be 
programmed to simulate arbitrary reversible circuits in a scalable
way.18 Xram was a small fully adiabatic static RAM chip.
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with respect to time reversals, so they remain re-
versible—that is, reverse-deterministic (at the
level of wavefunction evolution).

Given this constraint of reversibility, how can
we deal with unwanted information? One an-
swer is to just move it to some other system. If
an amount of information I is lost track of in this
process, this information has become entropy,
and so we have increased entropy by an amount
∆S = I, implying a free energy loss of T∆S, for a
(constant-volume) entropy dump at temperature
T, by the definition of temperature. For exam-
ple, an increase of ∆S = 1 bit = kB ln 2 in the en-
tropy of a system implies investing at least kBT
ln 2 energy in the system as heat. Rolf Landauer
first detailed this argument, connecting a loss of
known information with a loss of free energy;12

John von Neumann discussed a similar limit but
did not prove it in a 1949 lecture, published
posthumously, after Landauer’s work.13

In present-day commercial computer tech-
nology, every act of information storage, mean-
ing every bit operation performed by each of the
tens of millions of logic gates in every modern
CPU every nanosecond, uses this method of dis-
posal of old information. The storage location’s
previous contents are treated as unknown, thus
generating new entropy, with many orders of
magnitude worth of added energy inefficiencies.

However, there is an alternative: The space
and energy occupied by old, unwanted (but
known) information can be recycled by using the
knowledge about the old state to transform the
old state of the storage element into the new one
in a thermodynamically reversible way—by a
process that generates no entropy. Charles Ben-
nett first showed the theoretical possibility (con-
sistent with thermodynamics) of reversibly
reusing storage for multiple computations that
produce useful results,14 although earlier work
by Landauer12 and Yves Lecerf15 had danced
around the edges of this discovery.

Based on this insight, there is a small but
slowly growing research field of reversible com-
puting, which is concerned with investigating this
alternative of engineering systems that approach
the theoretical possibility of zero dissipation as
closely as possible. Realizable technologies can
indeed approach these predictions, as is sug-
gested, for example, by the adiabatic CMOS cir-
cuits that have been a popular topic of investi-
gation and experimentation (for myself and
coworkers, among others) in recent years.16–19

Adiabatic processes are those that asymptotically
approach thermodynamic reversibility at low

speeds, although no highly structured system can
be perfectly adiabatic because it will always be
subject to some background rate of decay toward
a less-structured equilibrium ensemble.

In the late 1990s, our group at the Massachu-
setts Institute of Technology designed and built
several processors that were almost fully adia-
batic (see Figure 5), to the limit set by transistor
off-state leakage currents. This demonstrates
that there is nothing inherently impossible or
even especially difficult about building real com-
puter architectures based on reversible logic.
These techniques could even soon lead to cost-
efficiency benefits in real electronics applications
that demand extremely low power consumption.

However, some interesting fundamental re-
search problems remain to be solved before we can
firmly establish the practicality of these kinds of
approaches for breaching sub-kBT energy levels.
To save space, I won’t discuss the open problems
here (see www.cise.ufl.edu/research/revcomp/
physlim/plpaper.html for a fuller description).

Current technology is relatively close to ap-
proaching the fundamental limits on energy dis-
sipation for irreversible storage. Current trends
have us reaching the limit of kBT ln 2 in only
about 35 years (see Figure 6). At that time, the
performance per unit power of ordinary irre-
versible computing, which does an irreversible
(entropy-producing) storage operation with
every logic-gate operation, will start to level off
to a maximum level of 3.5 × 1022 irreversible bit
operations per second in a 100-W computer that
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Figure 6. A trendline of minimum 1_2CV2 transistor switching
energy.3 Energy is expressed as a multiple of room-temperature kT,
which also is the number of nats of information associated with
that energy. If the trend is followed, thermal noise will begin to 
become significant in the 2030s, when transistor energies approach
small multiples of kT.
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disposes displaced entropy into a room-temper-
ature thermal reservoir. This rate is about a mil-
lion times higher than the maximum rate of bit
operations in a 30-million-gate, 1-GHz proces-
sor of today. Any possible further improvements
in performance per power beyond this point re-
quire reversible computing.

Communication limits

Communication is important in computing
because it constrains the performance of many
parallel algorithms. In his well-known work
spawning the field of information theory, Shan-
non derived the maximum information-carrying
capacity of a single wave-based communications
channel in the presence of noise.20 The coding
schemes used in state-of-the-art wave-based
communications today closely approach Shan-
non’s limits.

However, when considering the ultimate
physical limits relevant to computation, we must
go a bit beyond the scope of Shannon’s para-
digm. We want to know not only the capacity of
a single channel, but also the maximum band-
width for communication using any possible
number of channels, given only area and power
constraints.

Interestingly, the limits from the previous sec-
tion on information storage density and energy
directly apply to this. The difference between in-
formation storage and information communica-
tion is fundamentally only a difference in one’s
inertial frame of reference. Communication from
point A to point B is ultimately bit transporta-
tion—a form of “storage” but in a state of rela-
tive motion. Likewise, storage is just “communi-
cation” across zero distance but through time.

If we have a limit on information density ρ and
information propagation velocity v, we immedi-
ately get a limit of ρv on information flux den-
sity (flux for short)—that is, bits per unit time
per unit area in communications.

Of course, we always have a limit on propa-
gation velocity—namely, the speed of light c—
so each of the information density limits men-
tioned earlier directly implies a limit on flux
density, given suitable relativistic corrections.
We can thus derive a maximum information
bandwidth per unit area (in other words, infor-
mation flux) as a function of per-area power
density (energy flux).

For example, Smith9 shows that the maximum
entropy flux FS using photons, given energy flux
FE, is

,

where σSB is the Stefan-Boltzmann constant
π2kB

4/60c2h3. As a numerical example, a 10-cm
square wireless tablet transmitting electromag-
netically at a 1-W power level could never com-
municate at a bit rate of more than 6.8 × 1020 bits
per second, no matter what distribution of fre-
quencies or coding scheme we use, even in the
complete absence of noise.

This limit sounds high at first, but consider
that the corresponding bit rate per square
nanometer is only 68 kbps. For communication
among neighboring devices over a cross-section
of a computer having densely packed nanoscale
components, we want a much higher bandwidth
density, perhaps 1011 bps/nm2, to keep up with
the 100 GHz expected rate of bit operations in a
nanometer-size electronic component that is
1/100th the size of today’s 0.1 µm transistors.
This 106 times higher information flux would
require a (106)4/3 = 108 times higher power den-
sity (from Smith’s law)—that is, on the order of
1 MW/cm2. The equivalent temperature is
about 14,000 K. This seems too high to be prac-
tical—the computer would melt—so we can rule
out light as a practical medium for dense inter-
connects at the nanoscale, at least until we find
some way to build stable structures at such tem-
peratures.

In contrast, notice that if we encoded a bit in
more compact particles (atomic or electronic
states), given a plausible information density of 1
bit per cubic nanometer, we could achieve our
desired bit rate of 1011 bps/nm2 by using a quite
reasonable velocity of atoms or electrons of only
100 m/s.

Another interesting consideration is the min-
imum energy dissipation (as opposed to energy
transfer) required for communications. As we
saw earlier, we can look at a communication
channel as being the same thing as a storage ele-
ment but from a different relativistic angle. If the
channel’s input bit is in a known state, then
swapping it with the desired information takes
no energy.21 The channel does its thing—ide-
ally, ballistically transporting the information
and energy—and the information is then
swapped out at the other end, although the re-
ceiver needs an empty place to store it. However,
if the receiver’s storage location is already occu-
pied with a bit that’s in the way of our new bit
and that it can’t uncompute, then we have to pay
the energetic price to dispose of the old bit. 
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Computation rate limits

So far, I have focused only on limits on infor-
mation storage and communication. What about
computation itself? What minimum price, in
terms of raw physical resources, must we pay for
computational operations?

Earlier, we discussed the thermodynamic limit
on computational performance of irreversible
computations as a function of their power dissi-
pation, due to the need for removal of unwanted
garbage information. However, this limit might
not apply to reversible computations. Are there
other performance limits that apply to any type
of computation, even reversible ones?

Basically, yes: We can use quantum theory to
derive a maximum rate at which transitions (such
as bit flips) between distinguishable states can oc-
cur.10,22 One form of this upper bound depends
only on the system’s total energy E and is given
by 4E/h, where h = 2πh is the unreduced Planck’s
constant.

At first, this seems like an absurdly high bound
because the total energy presumably includes the
system’s rest mass-energy, which, if the system con-
tains massive particles, is substantial. For example,
Lloyd’s 1-kg ultimate laptop has a mass-energy of
9 × 1016 Joules, so its maximum rate of operation
comes out to be 5 × 1050 state changes per second.

If the system’s whole mass-energy is not ac-
tively involved in the computation, presumably
only the active portion of the mass-energy is rel-
evant in this bound. This gives a much more rea-
sonable level. For example, a hypothetical single-
electron device technology in which electrons
operate at 1 eV above their ground state could
perform state transitions at a maximum rate of 1
PHz (1015 Hz) per device. As with the speed limit
due to energy dissipation, this is only about a fac-
tor of a million beyond where we are today.

By changing the utilized set of distinguishable
states over time, a coherent quantum computer can
take drastic shortcuts through state space to quickly
solve certain problems.23 However, the rate of or-
thogonal transitions and the number of distinct
states always still obey the limits discussed here.

All computer users, including compu-
tational scientists and engineers, nat-
urally hope that the trend of increasing
affordability of computing power will

take us as far as possible. Where the ultimate
limits of computing lie is obviously an important
question; indeed, some have suggested it could
even have a bearing on the long-term fate of life

itself.24–26 However, our best available knowl-
edge of physics strongly indicates that some ul-
timate limits do exist, and gives us loose upper
bounds on what we can achieve. 

One of the most imminent of the fundamental
limits appears to be the limit on the energy dis-
sipation of irreversible computation, which
might possibly be circumvented through the use
of reversible computing techniques. Although
reversible computing has made impressive
progress, whether this “fix” can ultimately work
in a scalable and cost-efficient way remains an
open question, one that is the subject of active
research by myself and others.

I hope that this article inspires researchers in
many fields to devote increased attention to find-
ing ways to meet the incredible challenges fac-
ing the future of computing as it approaches the
many limits found at the atomic scale. These
limits are now close enough to fall within the ca-
reer horizons of people starting out today. For
example, given present rates of improvement,
computing will encounter the kBT thermody-
namic barrier before today’s 30-year-old PhD
graduates retire. Although computing appears
to be nearing various hard physical limits, the
race to get as far as possible within those limits
promises exciting research opportunities in
many areas of the physical and computer sci-
ences as we develop these new machines. 

But, even if someday we figure out how to op-
timally harness all the raw computational power
of physics itself, we can be sure that our ultimate
power users—computational scientists and en-
gineers—will enthusiastically tackle new prob-
lems so challenging that computers will still
seem too slow.
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